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We propose the set of coupled ordinary differential equations dnj/dt = n2

j−1 − n2

j as a discrete
analog of the classic Burgers equation. We focus on traveling waves and triangular waves, and
find that these special solutions of the discrete system capture major features of their continuous
counterpart. In particular, the propagation velocity of a traveling wave and the shape of a triangular
wave match the continuous behavior. However, there are some subtle differences. For traveling
waves, the propagating front can be extremely sharp as it exhibits double exponential decay. For
triangular waves, there is an unexpected logarithmic shift in the location of the front. We establish
these results using asymptotic analysis, heuristic arguments, and direct numerical integration.
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The classic Burgers equation

nt + (n2)x = νnxx (1)

is the simplest partial differential equation which incor-
porates both nonlinear advection and diffusive spreading
[1–6]. This ubiquitous equation emerges naturally in the
presence of dissipation, and it is broadly used to model
traffic flows [2], transport processes [7, 8], surface growth
[9, 10], and large scale formation of matter in the Uni-
verse [11, 12].

The Burgers equation has two important properties.
The first is continuity: equation (1) can be written in
the form nt + Jx = 0, hence assuring mass conservation
in the absence of sources or sinks. If we view the quan-
tity n as a density, then the total mass is a conserved
quantity,

∫ ∞
−∞ dxn(x, t) = const., as long as the density

vanishes, n(x) → 0 in the limits x → ±∞. The second
property is asymmetry: due to the nonlinear advection
term, equation (1) is not invariant with respect to the
inversion transformation x→ −x.

Our goal is to construct a discrete (in space) coun-
terpart of the Burgers equation that maintains these
two properties [13–16]. Thus we discretize the spa-
tial coordinate but keep the time variable continuous,
n(x, t) → nj(t), where j is integer. The differential equa-
tion

dnj

dt
= f(nj−1) − f(nj) (2)

represents a continuity equation on a one-dimensional
lattice. Indeed, a finite total mass M =

∑∞
j=−∞ nj re-

mains constant, M = const., if two conditions are met:
(i) a vanishing density nj → 0 as j → ±∞, and (ii)
a vanishing function f at the origin, f(0) = 0. To re-
produce the nonlinear advection term in (1), we take a
purely quadratic and positive function f(n) = n2. With
this choice, we arrive at the set of nonlinear difference-
differential equations

dnj

dt
= n2

j−1 − n2
j . (3)

This system of equations meets the two criteria of mass
conservation and asymmetry.

Immediately, we can point out an important differ-
ence between the discrete equation (3) and the contin-
uous equation (1). Let us treat the spatial variable in (3)
as continuous, j → x, and replace the difference with a
second order Taylor expansion. The result of these two
steps is the continuous equation

nt + (n2)x = (nnx)x. (4)

By construction, the nonlinear advection term is the
same as in (1). However, the viscosity equals the den-
sity, ν = n, whereas in the original Burgers equation,
the viscosity is constant. We restrict our attention to
positive densities,

n > 0, (5)

so that the solutions of (3) are stable (avoiding a negative
diffusion instability). We note that transport coefficients
often depend on density or temperature; in fluid dynam-
ics [4, 5], for example, transport coefficients vary as

√
T

for hard-sphere gases.
Equation (3) describes the evolution of the probabil-

ity density in a two-body analog of the standard Poisson
process [17]. For example, we mention a homophilic net-
work growth process [18]. In the canonical random net-
work model, a pair of nodes are chosen at random and
subsequently, the two are connected by a link. This ele-
mentary step is repeated indefinitely, and in finite time, a
percolating network emerges. As a model of homophilic
networks where only similar entities interact, we con-
sidered the situation where only nodes with exactly the
same degree can be connected [19]. The degree distribu-
tion nj(t), that is, the fraction of nodes of degree j at
time t, obeys the rate equation (3). The initial condi-
tion nj(0) = δj,0 represents a disconnected set of nodes.
In this network context, the quantity nj(t) is a proba-
bility density, and mass conservation guarantees proper
normalization,

∑∞
j=0 nj = 1. Moreover, the condition

(5) reflects that probability distribution functions are by
definition positive.
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FIG. 1: The traveling wave. Shown is the function nj(t)
versus j at four different times: t = 110, 120, 130, 140. The
results are from numerical integration of the Eq. (3) subject
to the step initial condition (6).

In this paper, we discuss the solutions of the discrete
equation (3) in view of the well known solutions of the
continuous equation (1). Using a combination of theoret-
ical and numerical methods, we analyzed the solutions of
the discrete equation for the following standard initial
conditions [2]: (i) a step function resulting in a traveling
wave, (ii) a localized delta function leading to a triangu-
lar wave, and (iii) a complementary step function with an
ensuing rarefaction wave. For all of these cases, we find
that the discrete analog faithfully captures the primary
features of the continuous Burgers equation. However,
we also find subtle and interesting departures from the
classical solutions in the first two cases. Therefore, in
the rest of this paper, we focus on traveling waves (also
known as shock waves) and triangular waves.

Traveling Waves

We first consider the step function initial condition

nj(0) =

{

1 j ≤ 0

0 j > 0.
(6)

Using the convenient Adams-Bashforth method [20, 21],
we numerically integrate the rate equation (3) and find
that the solution approaches a traveling wave (figure 1)

nj(t) → G(j − vt), (7)

in the long-time limit. The function G(z) specifies the
form of the traveling wave and v is the propagation ve-
locity. Of course, the function G(z) has the limiting be-
haviors limz→−∞G(z) = 1 and limz→∞G(z) = 0.

To find the propagation velocity, we first note that
according to equations (3) and (6), the density does not
evolve, nj(t) = 1 when j ≤ 0. Next, we define the mass
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FIG. 2: The negative-z tail of the function G(z). Shown is the
quantity 1− nj versus j − t at various times. The theoretical
prediction (12) with β = 1.59362 is also shown for reference.

in the positive half space, M+(t) =
∑∞

j=1 nj(t), and note

that summation of (3) gives

dM+

dt
= n2

0 . (8)

Since M+(0) = 0 and n0(t) = 1, the mass equals time,
M+ = t. This fact, along with equation (7) and the
limiting behaviors of the function G(z), gives the velocity

v = 1. (9)

Hence, the propagation velocity, which is dictated by
mass conservation, agrees with the continuous value [22].

To characterize the shape of the traveling wave, we
substitute the form (7) into the governing equation (3).
The function G(z) satisfies the nonlinear and nonlocal
differential equation

G′(z) = G2(z) −G2(z − 1), (10)

where prime denotes derivative with respect to z. We
now use asymptotic analysis to obtain the leading asymp-
totic behaviors of G(z) in the limits z → ±∞.

Since G(z) → 1 when z → −∞, we substitute
G(z) = 1 − φ(z) into equation (10), and obtain a linear

yet nonlocal equation for the correction function φ,

φ′(z) = 2[φ(z) − φ(z − 1)]. (11)

Therefore, the correction decays exponentially,
φ(z) ∼ eβz. By substituting this behavior into (11), we
find the decay constant β = 1.59362 as the nontrivial
root of the transcendental equation β = 2(1 − e−β). As
shown in figure 2, the numerical results confirm that

1 −G(z) ∼ eβz (12)

when z → −∞. This exponential behavior agrees, at
least qualitatively, with the corresponding behavior in
the continuous case [23].
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FIG. 3: The positive-z tail of the traveling wave function
G(z). Shown is 2j−tnj versus 2j−t at three different times.

In the complimentary z → ∞ limit, we expect that
G(z) → 0. Now, the positive term in (10) is negligible,
and the behavior is governed by the nonlinear and non-
local equation G′(z) = −G2(z − 1). We use the WKB
transformation [24] G(z) ≃ Ψexp(−ψ) and arrive at the
linear relation

ψ(z) = 2ψ(z − 1). (13)

We thus obtain the exponential solution ψ(z) = γ 2z and
further, the prefactor Ψ(z) = (4 ln 2)ψ(z). The constant
γ cannot be determined in the realm of asymptotic anal-
ysis; numerically, we obtain γ = 0.818. Remarkably, the
leading tail of the traveling wave is extremely sharp, as it
follows the unusual double exponential decay (figure 3)

G(z) ∼ 2ze−γ 2z

(14)

when z → ∞. Hence, the front of the propagating wave
does not extend beyond a few lattice sites (see figure
1). In the continuous case the traveling wave is specified
by Gcont(z) = 1

2 [1 − tanh(z/2ν)] and hence, the shape is
symmetric as Gcont(z) +Gcont(−z) = 1. Therefore, the
behavior in the discrete case differs in two ways. First,
the shape of the traveling wave is asymmetric. Second,
the leading tail of the wave follows a double-exponential
decay, in contrast with the simple exponential decay in
the continuous case.

To gain further insight into the extremely sharp front
(14), we also study the continuous equation (4). We
assume that the solution approaches a traveling wave,
n(x, t) → g(x− vt), with velocity v = 1 (again, the ve-
locity is set by the continuity condition). From Eq. (4),
the function g(z) obeys the ordinary differential equation

g′ − 2gg′ + (gg′)′ = 0. (15)

Integration of this equation is immediate, and using the
limiting behavior g → 0 as z → ∞, we have g′ = g − 1.

We now invoke the limiting behavior g → 1 as z → −∞
and find

g(z) =

{

1 − ez−z0 z ≤ z0,

0 z ≥ z0.
(16)

This family of solutions is parameterized by z0, a quan-
tity that depends on the details of the initial conditions.
Hence, the traveling wave is exponential everywhere be-
hind the front which is located at t + z0. In particular,
the negative-z tail is analogous to (12). Remarkably, the
leading front of the traveling wave is perfectly sharp [25–
27] as the function g vanishes beyond the front location!

We view the double exponential decay (14) as a dis-
crete analog of a perfectly sharp front. Moreover, the
effective viscosity ν ≡ n and the vanishing density ahead
of the propagating front are together responsible for the
extremely sharp front [22].

Triangular Waves

Under the Burgers equation (1), an initial condition
with compact support necessarily evolves into a trian-
gular wave. Moreover, the shape of the triangular wave
is universal. Without loss of generality, we consider the
localized initial condition

nj(0) = δj,1 . (17)

As discussed above, according to the discrete equation
(3), the total mass is conserved. Moreover, there is no
evolution in the negative half-space, nj(t) = 0 for j ≤ 0.
Therefore, the mass in the positive half space equals
unity, M+(t) =

∑

j≥1 nj(t) = 1.

Numerically, we integrate the discrete equation (3)
starting with the initial condition (17) and find that the
density adheres to the scaling form (figure 4)

nj(t) ≃
1√
t
F

(

j√
t

)

. (18)

Further, the scaling function is triangular (figure 4)

F (x) =











0 x < 0;
x
2 0 < x < 2;

0 x > 2.

(19)

Therefore, the discrete equation (3) captures the basic
features of the continuous equation (1).

The scaling behavior (18)–(19) follows from the in-
viscid Burgers equation ∂n/∂t+ 2n∂n/∂j = 0. Indeed,
mass conservation, in conjunction with the inviscid Burg-
ers equation, dictates the scaling form (18) and the nor-
malization

∫ ∞
0
dxF (x) = 1. By substituting (18) into (1)

and ignoring the diffusion term, we see that the function
F obeys

d

dx

[

F
(

F −
x

2

)]

= 0. (20)
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FIG. 4: The triangular wave. Shown is the function t1/2nj(t)

versus the scaling variable jt−1/2 at different times.

There are two solutions, F = x/2 and F = 0, and conse-
quently, the scaling function is piecewise-linear as in (19).
Finally, the extent of the nonzero region, 0 < x < 2, is
set by the normalization condition.

We now analyze the solution of the discrete equation
(3) in the asymptotic regime. The quantity n1 satisfies
the closed equation dn1/dt = −n2

1, and using the initial
condition n1(0) = 1, we have

n1 =
1

1 + t
. (21)

This density is inversely proportional to time, n1 ≃ t−1

in the limit t → ∞. The structure of the rate equations
(3) suggests that in general, the densities nj are inversely
proportional to time,

nj ≃ Aj t
−1, (22)

when t → ∞. Substitution of (22) into (3) shows that
this asymptotic behavior is compatible with the rate
equation, and furthermore, yields a quadratic recursion
relation for the prefactors,

A2
j −Aj = A2

j−1. (23)

Starting with A1 = 1, we can iteratively obtain the pref-
actors from the explicit formula

Aj =
1 +

√

1 + 4A2
j−1

2
(24)

leading to A2 = 1+
√

5
2 , A3 = 1+

√
7+2

√
5

2 , etc. [28].
We use a continuum approach to calculate the large-j

asymptotic behavior of Aj . To obtain the leading asymp-
totic behavior, we convert equation (23) into the differen-
tial equation dA/dj = 1/2. Hence, to leading order, the
coefficients are linear, Aj ≃ j/2, and from the asymptotic
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FIG. 5: The front of the triangular wave. Shown is the func-
tion t1/2nj(t) versus j − j∗ with j∗ given by (27) at different
times.

behavior (22) one has nj ≃ j/(2t). We thus recover the
continuous behavior indicated by (18) and F (x) = x/2.

There is, however, a correction to the leading asymp-
totic behavior. We substitute Aj = j/2 + uj into (23)
and find that the correction uj obeys the recursion

(j − 1)(uj − uj−1) =
1

4
+ u2

j−1 − u2
j , (25)

and u1 = 1/2. When j is large, the difference between
the two quadratic terms is negligible, and the continuous
approach gives du/dj = 1/(4j). As a result, the prefac-
tors include a logarithmic correction

Aj ≃
j

2
+

ln j

4
+ C . (26)

The constant C = 0.32324 is computed by numerical
iteration of (24).

The logarithmic correction affects the location of the
propagating wave. If we denote the front location by j∗,

then mass conservation gives
∑j∗

j=1 nj ≃ 1. Substitution

of (22) and (26) into this sum yields

j∗ ≃ 2
√
t− 1

4 ln t , (27)

by straightforward asymptotic analysis. The leading
term follows from the continuous behaviors (18) and the
extent of the triangular wave specified by (19). However,
the logarithmic correction, which follows from the coef-
ficient (26) constitutes a departure from the continuous
behavior. We conclude that the triangular wave has the
following form

nj(t) ≃











0 j ≤ 0,

Ajt
−1 0 < j ≪ j∗,

0 j ≫ j∗.

(28)

We already established the front location j∗ and the
maximal height of the wave n∗ ∼ t−1/2 which follows
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from (18) and (19). Thus, we anticipate the scaling be-
havior

nj(t) ≃
1√
t
G(j − j∗), (29)

in the finite neighborhood j − j∗ ∼ O(1). Numerical in-
tegration confirms this scaling behavior (figure 5). The
function G(z) specifies the shape of the front. By sub-
stituting (29) and (27) into the rate equation (3), we
see that the scaling function G(z) satisfies (10). Hence,
triangular waves and the traveling waves have identical
fronts! This behavior is remarkable in view of the two
very different scaling forms (18) and (29). In particu-
lar, the leading front is extremely sharp and follows the
double exponential decay (14).

We also studied rarefaction waves by considering the
complementary step function

nj(0) =

{

0 j ≤ 0,

1 j > 0.
(30)

Again, there is no evolution in the negative half space.
According to the continuous equation (1), the density
obeys the scaling behavior nj(t) → F (j/t) with the very
same F (x) given by equation (19). Of course, there is
a significant difference with the triangular wave as the
extent of the wave is now linear in time. In addition,
there are diffusive boundary layers, for example when
j− 2t ∼ O(t1/2). Numerical integration of the rate equa-
tion (3) shows that the scaling behavior and the diffusive
boundary layer both agree with the continuous case.

In contrast with the traveling and triangular waves
above, we can replace the difference equation (3) with
the differential equation (1) even inside the front region
because the size of the boundary layer grows diffusively
with time. However, the discrete and the continuous
equations are not equivalent when j ∼ O(1) because of
the vanishing viscosity.

Integrability is a remarkable feature of the Burgers
equation: the Cole-Hopf transformation n = −νux/u
turns the nonlinear equation (1) into the ordinary dif-
fusion equation ut = νuxx. Our discrete equation (3) is
not integrable. Interestingly, however, the discrete equa-

tion

dnj

dt
= nj(nj − nj−1) (31)

which has a purely quadratic right-hand-side and mimics
the nonlinear advection term in the Burgers equation,
can be linearized. The transformation [29]

nj =
qj
qj+1

(32)

reduces the nonlinear equation (31) into the linear equa-
tion dqj/dt = qj−1. Using this transformation, equation
(31) can be solved exactly for the initial condition (30).
From the solution qj = 1 + t + 1

2 t
2 + · · · + 1

(j−1)! t
j−1,

the rarefaction wave discussed above follows immediately.
However, the discrete equation (31) does not satisfy con-
tinuity. Constructing a discrete analog of the Burgers
equation which satisfies the continuity condition, and in
addition, can be transformed into a linear equation is an
interesting challenge.

In summary, we introduced a discrete nonlinear equa-
tion that captures the key properties of the Burgers equa-
tion. Intriguingly, the most natural discrete analog of the
Burgers equation is essentially unique: matching the non-
linear advection term dictates a viscosity that is equal to
the density, ν = n. The discrete equation satisfies the
continuity condition and consequently, the mass of an
initially localized “bump” is conserved. The mass con-
servation ensures that the velocity of a traveling wave
and the shape of a triangular wave match the continuous
behavior, to leading order. We also find that the shape
of a triangular wave is identical to the continuous case.

In contrast with the classic Burgers equation, the vis-
cosity equals the density. This discrepancy results in sub-
tle departures from the continuous behavior: The shape
of the traveling wave is asymmetric, and moreover, the
front of the wave is extremely sharp with double expo-
nential tail. Further, the front of the triangular wave
includes a logarithmic-in-time correction to the leading
behavior which is diffusive.
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